

multimatch-gaze: Multidimensional scan path comparison in Python

Contents:

	Algorithm

	multimatch-gaze

	API

	An example computation

Algorithm

The MultiMatch method is a vector-based, multi-dimensional approach to
compute scan path similarity. It was originally proposed by Jarodzka, Holmqvist
& Nyström (2010) and implemented as a Matlab toolbox by Dewhursts and colleagues
(2012).

The method represents scan paths as geometrical vectors in a two-dimensional
space: Any scan path is build up of a vector sequence in which the vectors
represent saccades, and the start and end position of saccade vectors represent
fixations. In the example image below, the scan path is build by connecting the
fixations (red dots) with vectors (black lines), which constitute simplified
saccades.

[image: examplary scan path]
Example scan path as used in the MultiMatch algorithm

Two such sequences (which can differ in length) are compared on the
five dimensions vector shape, vector length (saccadic amplitude), vector
position, vector direction and fixation duration for a multidimensional
similarity evaluation.

[image: scan path dimensions]
Dimensions of scan path comparison, taken from Dewhurst et al., 2012

Overview

The method takes two n x 3 fixation vectors (x-coordinate in px, y-coordinate in px,
duration in sec) of two scan paths as its input. Example files how input should look
like can be found here [https://github.com/adswa/multimatch_gaze/tree/master/data/fixvectors].

	Step 1: Representation of scan paths as vector sequences

An idealized saccade is represented as the shortest distance between two
fixations. The Cartesian coordinates of the fixations are thus the starting
and ending points of a saccade. The length of a saccade in x direction is
computed as the difference in x coordinates of starting and ending point.
The length of a saccade in y direction is computed accordingly. To represent
a saccade as a vector in two-dimensional space, the lengths in x and y
directions are transformed into polar coordinates (length from coordinate
origin (Rho), polar angle in radians (Theta)) by means of trigonometry.

	Step 2: Scanpath simplification

Scanpaths are simplified based on angle and amplitude (length) to reduce
their complexity. Two or more saccades are grouped together if angles
between two consecutive saccades are below an angular threshold TAmp, and
intermediate fixations are shorter than a duration threshold TDur, or if
the amplitude of successive saccades is below a length threshold TAmp and
the surrounding fixation duration. As such, small, locally contained
saccades, and saccades in the same general direction are summed to form
larger, less complex saccades (Dewhurst et al., 2012). This process is
repeated until no further simplifications are made. Thresholds can be set
according to use case. The original simplification algorithm implements an
angular threshold of 45° and an amplitude threshold of 10% of the screen
diagonal (Jarodzka, Holmqvist & Nyström, 2010).

	Step 3: Temporal alignment

Two simplified scan paths are temporally aligned in order to find
pairings of saccade vectors to compare. The aim is not necessarily to
align two saccade vectors that constitute the same component in their
respective vector sequence, but those two vectors that are the most
similar while preserving temporal order. In this way, a stray saccade in
one of the two scan paths does not lead to an overall low similarity
rating, and it is further possible to compare scan paths of unequal
length. To do so, all possible pairings of saccades are evaluated in
similarity by their shape (i.e. vector differences). More formally, the
vector difference between each element i in scan path
S1 = (u1, u2, …, um)
and each element j in scan path
S2 = (v1, v2, …, vn)
is computed and stored in Matrix M as a weight. Low weights correspond to high
similarity. An adjacency matrix of size M is build, defining rules on
which connection between matrix elements are allowed: In order to take
temporal sequence of saccades into account, connections can only be made
to the right, below or below-right. Together, matrices M and the
adjacency matrix constitute a matrix representation of a directed,
weighted graph. The elements of the matrix are the nodes, the connection
rules constitute edges and the weights define the cost associated with
each connection.

	Step 4: Scanpath selection

A Dijkstra algorithm (Dijksta, 1959) is used to find the shortest path from
the the first two saccade vectors to the last two saccade vectors.
“Shortest” path is defined as the connection between nodes with the lowest
possible sum of weights.

	Step 5: Similarity calculation

Five measures of scan path similarity are computed on the aligned
scan paths. This is done by performing simple vector arithmetic on all
aligned saccade pairs, taking the median of the results and
normalizing it. As a result, all five measures are in range [0, 1] with
higher values indicating higher similarity between scan paths on the
given dimension.

For a more detailed overview of the algorithm, take a look at the original
publication by Dewhurst [https://link.springer.com/article/10.3758%2Fs13428-012-0212-2] et al. (2012) and Jarodzka [http://portal.research.lu.se/ws/files/5608175/1539210.PDF] et al. (2010).

References

Dewhurst, R., Nyström, M., Jarodzka, H., Foulsham, T., Johansson, R., &
Holmqvist, K. (2012). It depends on how you look at it: Scanpath comparison in
multiple dimensions with MultiMatch, a vector-based approach. Behavior research
methods, 44(4), 1079-1100. https://doi.org/10.3758/s13428-012-0212-2

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs.
Numerische Mathematik, 1(1), 269 - 271. https://doi.org/10.1007/BF01386390

Jarodzka, H., Holmqvist, K. & Nyström, M. (2010). A vector-based,
multidimensional scanpath similarity measure. In ETRA ‘02: Proceedings of the
2010 symposium on eye tracking research and applications, ACM, New York.
https://doi.org/10.1145/1743666.1743718

multimatch-gaze

multimatch-gaze is a Python-based reimplementation of the MultiMatch algorithm
(Jarodzka, Holmqvist & Nyström, 2010).
The original Matlab toolbox was kindly provided via email by Dr. Richard Dewhurst
and the method was ported into Python with the intent of providing an open source
alternative to the Matlab toolbox.

The module provides the possibility to compute the similarity of two scan paths
with a terminal command or within a Python instance (see section API [https://multimatch.readthedocs.io/en/latest/api.html]).

Getting started

Installation

It is recommended to use a dedicated virtualenv [https://virtualenv.pypa.io].

create and enter a new virtual environment (optional)
virtualenv --python=python3 ~/env/multimatch
. ~/env/multimatch/bin/activate

Via pip install

multimatch-gaze can be installed via pip [https://pip.pypa.io] (Pip Installs Python). To
automatically install multimatch-gaze with all dependencies (pandas [https://pandas.pydata.org/], numpy [https://www.numpy.org/], argparse [https://docs.python.org/3/library/argparse.html])
type:

pip install multimatch-gaze

Via Github

The source code for multimatch-gaze can be found on Github [https://github.com/adswa/multimatch_gaze].

A short tutorial…

… session to get a first hang on how to use multimatch-gaze can be
conducted by cloning the Github repository and executing the
examples provided in the API [https://multimatch.readthedocs.io/en/latest/api.html]
section. The data used in these examples corresponds to the
data found in the repository.

Support

All bugs, concerns and enhancement requests for this software can be submitted
here [https://github.com/adswa/multimatch_gaze/issues/new].
All contributions, be it in the form of an issue or a pull-request,
are always welcome.
If you wish to test the functionality of multimatch-gaze locally, for example
prior to a pull-request, install pytest [https://docs.pytest.org/en/latest/] and run the following command from the
root of the repository:

python -m pytest

python -m pytest -s -v

Acknowledgements

We thank Dr. Richard Dewhurst for kindly and swiftly providing the original
Matlab code for the MultiMatch toolbox via e-mail and being supportive of an
open source implementation.

API

The multimatch-gaze command is the standalone equivalent of the MultiMatch
toolbox and is easiest executed directly from the command line.

Command line

The computation of the similarity between two scan paths doesn’t involve anything
beyond the command line keyword multimatch-gaze followed by two input files,
corresponding to tab-separated files with a fixation vector, and the screensize in
pixel, supplied as two consecutive integers corresponding to the x and y dimension
of the screen:

multimatch-gaze path/to/scanpath_one path/to/scanpath_two x_dim y_dim

The input files will be read with numpys recfromcsv() and should contain
one fixation per line. The first three columns of the input file are relevant.
One column should contain x-coordinates of the fixation in px
(start_x), one column should contain y-coordinates in px (start_y),
and one column should contain contain the fixation duration (duration) in seconds.
Example files with this structure can be found here [https://github.com/adswa/multimatch/tree/master/data/fixvectors]. Note that the input data needs to
have a header with the correct column names (x_start, y_start, duration).

An examplary command line call that you could execute if you cloned the
repository looks like this:

multimatch-gaze data/fixvectors/segment_0_sub-01.tsv data/fixvectors/segment_0_sub-19.tsv 1280 720

Scanpath simplification

Optionally, scan paths can be simplified to reduce their complexity. To simplify
scan paths, specify the following arguments:

	--direction-threshold: If two consecutive saccades have a small angle, they will be
combined. Should be in degrees, such as 45.0 for 45°

	--amplitude-threshold: If two consecutive saccades are short, they will be
combined. Should be in pixel, such as 100.0 for 100px.

	--duration-threshold: Only if the intermediate fixation’s durations are
shorter than this threshold the above simplification will be performed. Should
be in seconds, such as 0.1 for 100ms.

Note: If either direction- or amplitude threshold is specified as 0, no
grouping will be performed!

A commandline call of the module with simplification would hence look like
this:

multimatch-gaze data/fixvectors/segment_0_sub-01.tsv data/fixvectors/segment_0_sub-19.tsv 1280 720
--direction-threshold 45.0 --amplitude-threshold 100.0 --duration-threshold 0.1

There are no guidelines whether and if so, how much,
simplification is appropriate, and it is strongly dependent
on individual use case. The original Matlab toolbox implements a default
amplitude threshold of 10% of the screen diagonal as amplitude, 45° as angle, and 300ms as
duration thresholds. multimatch-gaze has defaults of 0 for simplification parameters
(i.e. simplification is not performed by default).

Output configuration

The way results are displayed in the command line can be configured with the -o/--output-type
parameter.
Three different formats are possible:

	hr (default): Results are returned row-wise, with dimension name. This is the
most human readable format, and good for a quick glance at results:

Vector similarity = <value>
Direction similarity = <value>
...

	single-row: Results are returned in a single row, delimited with tabs, and without
dimension name. Makes it easy to collate results in a table:

<vectorsim>\t<directionsim>\t<lengthsim>\t<positionsim>\t<durationsim>

	single-del: Results are returned row-wise, with tabs seperating dimension name
and value. This makes it easy to pick out a selection of scores:

vector\t<value>
direction\t<value>
length\t<value>
position\t<value>
duration\t<value>

REMoDNaV helper

REMoDNaV [https://github.com/psychoinformatics-de/remodnav] is a velocity-based event detection algorithm for eye movement classification.
It detects and labels saccades, fixations, post-saccadic oscillations, and smooth pursuit
movements, and it was specifically developed to work with dynamic stimulation.
REMoDNaV is an open-source Python package, and its outputs, BIDS-compliant [https://bids-specification.readthedocs.io/en/stable/] TSV files,
can be read natively by multimatch-gaze. The conversion of data to a fixation vector is
then handled internally.

Should you have data produced by REMoDNaV, you can to supply the --remodnav
parameter:

multimatch-gaze data/remodnav_samples/sub-01_task-movie_run-1_events.tsv
data/remodnav_samples/sub-01_task-movie_run-2_events.tsv 1280 720 --remodnav

As REMoDNaV classifies pursuits, which can be seen as a “visual intake” category such
as fixations, you can decide whether to include or discard any pursuit events. Using pursuits
would be useful for example in the case of moving stimuli: Visual intake of a moving target
would appear as a pursuit in eye tracking data. Setting this function is
handled with the --pursuit parameter. Chose between options "discard" and
"keep".

	discard (default) will disregard pursuit events.

	keep will turn a pursuit movement into two fixations - the start and ending point
of the pursuit movement.

Specify to keep pursuit movements (i.e. inclusion into the scan path) like this:

multimatch-gaze data/remodnav_samples/sub-01_task-movie_run-1_events.tsv
data/remodnav_samples/sub-01_task-movie_run-2_events.tsv 1280 720 --remodnav --pursuit 'keep'

Python

If you wish to use the functionality of multimatch-gaze within a running Python
instance such as IPython, you can import the module and use the function
docomparison. Here is an example:

import multimatch_gaze as m
import numpy as np

read in data
fix_vector1 = np.recfromcsv('data/fixvectors/segment_0_sub-01.tsv',
delimiter='\t', dtype={'names': ('start_x', 'start_y', 'duration'),
'formats': ('f8', 'f8', 'f8')})
fix_vector2 = np.recfromcsv('data/fixvectors/segment_0_sub-19.tsv',
delimiter='\t', dtype={'names': ('start_x', 'start_y', 'duration'),
'formats': ('f8', 'f8', 'f8')})

Optional - if the input data are produced by REMoDNaV
pursuits = True is the equivalent of --pursuits 'keep', else specify False
fix_vector1 = m.remodnav_reader('data/remodnav_samples/sub-01_task-movie_run-1_events.tsv',
screensize = [1280, 720], pursuits = True)

execution with multimatch-gaze's docomparison() function without grouping
m.docomparison(fix_vector1, fix_vector2, screensize=[1280, 720])

execution with multimatch-gaze's docomparison() function with grouping
m.docomparison(fix_vector1, fix_vector2, screensize=[1280, 720], grouping=True, TDir=30.0,
TDur=0.1, TAmp=100.1)

The results will be returned as an array, such as [0.98, 0.87, 0.45, 0.78, 0.80].

An example computation

The following section shows a multimatch-gaze use case to compute the scan path
similarities of participants that watched the Hollywood movie Forrest Gump
during simultaneous fMRI acquisition.

Data and sample

Data for all analyses stems from the 2016 released extension of the studyforrest dataset
(Hanke et al., 2016; Sengupta et al., 2016). In this extension,
N = 15 right-handed participants (age range 21 - 39 years, mean age 29.4 years, six female,
normal or corrected-to-normal vision), who had previously participated in the studyforrest
project, watched the audio-visual movie ‘Forrest Gump’ (R. Zemeckis, Paramount Pictures, 1994)
during simultaneous fMRI and eye-tracking recording. The video track for the movie stimulus
was re-encoded from Blu-ray into H.264 video (1280 x 720px at 25 frames per second
(fps)). In accordance to the procedure in an earlier phase of the studyforrest project, the
movie was shortened by removing a few scenes less relevant for the major plot to keep
the fMRI recording session under two hours. The shortened movie was then split into
eight segments of roughly 15 minutes of length (for an overview on segment duration,
final stimulus content and detailed procedures see Hanke et al. (2014)).
Visual stimuli were projected on to a screen inside the bore of the magnet using
an LCD projector, and presented to the subjects through a front-reflective mirror on
top of the head coil at a viewing distance of 63cm. The screen dimensions were 26.5cm
x 21.2cm (corresponding to 1280 x 1024px) at a resolution of 720p at full width, with
a 60Hz video refresh rate (Sengupta et al., 2016). Eye-tracking was performed with
an Eyelink 1000 (software version 4.594) using monocular corneal reflection and pupil
tracking with a temporal resolution of eye gaze recordings of 1000Hz.
The camera was mounted at an approximate distance of 100cm to the left eye of subjects, which
was illuminated by an infrared light source (Hanke et al., 2016). Eye-tracking data were normalized such
that all gaze coordinates are in native movie frame pixels, with the top-left corner of
the movie frame located at (0, 0) and the lower-right corner located at (1280, 546)
(ibid.). The amount of unusable data, primarily due to signal loss during eye blinks,
ranged from less than 1 to 15% for 13 of the 15 in-scanner subjects (the other two
subjects’ data contained 85 and 36% of data loss, respectively). In-scanner acquisition
had an approximate spatial uncertainty of 40px according to the calibration procedure
(ibid.).

Event detection and scan path derivation

Raw gaze data was classified into different categories of eye movements
with an adaptive, data-driven algorithm for robust eye movement detection for natural
viewing (REMoDNaV [https://github.com/psychoinformatics-de/remodnav]) in Python. The algorithm categorizes the raw data into
saccades, fixations, smooth pursuits, and post-saccadic oscillations
(glissades), and disregards any unclassifiable data (such as blinks). It was specifically
developed to compute robust results even under high noise conditions.
For an overview of the algorithmic details and evaluation of REMoDNaV compared to
contemporary algorithms and human annotations, please see the respective publication [https://github.com/psychoinformatics-de/paper-remodnav/]
(Dar et al., in preparation) or take a look at the REMoDNaV [https://github.com/psychoinformatics-de/remodnav] module.
The eye events are reported together with their start and end coordinates, their onsets
and durations in seconds, their velocity, and the average pupil size.
Fixation vectors as input for multimatch-gaze were derived from the REMoDNaV output.
As the stimulus was dynamic with moving targets that evoke smooth pursuit movements,
such pursuit events are categorized to be
an eye movement category of ‘visual intake’, just as fixation. Therefore, in a first step,
the start and end of pursuit movements were included in scan paths to compare as well.
In a second step, the continuous eye movement data (~15 min per run) was split into shots
corresponding to segments that did not contain scene changes between depicted
locales using the published location annotation for the movie (Häusler & Hanke,
2016). This was done to accommodate the fact that subjects gazes have
a bias towards the center in Hollywood movies (Tseng et al. 2009). This bias can
at least in part be traced back to a strong center bias directly after cuts in
dynamic scenes. Lastly, within each segment, scan paths of the median shot length
of ~4.92 seconds. To further evade any problems associated with the center bias,
scan paths were extracted from the end of the segment: The last oculomotor event
within the range of the segment marked the end of a scan path. As such, scan paths
began maximally distant to the snippet onset.

multimatch-gaze application

Overall scan path similarities were computed in a two-step procedure. First,
scan path comparisons of all scan paths from the same shot of two subjects were
calculated for all possible pairs of subject. This resulted in 105 combinations
for N = 15 subjects. These comparisons were done without any further
simplification (i.e. no use of the direction, length, and duration thresholds),
as even minor differences in scan paths obtained from a movie can correspond to
major differences in attended visual stimuli. In a second step, the resulting
similarities for each of the five similarity dimensions were averaged. Thus, for
each snippet longer than 4.92s five similarity measures were computed that
represented the average similarity of scan paths of all subjects on the given
dimension.
The results of this computation can be found on Github [https://www.github.com/adswa/multimatch_forrest].

Results

In total, 533 scan paths were extracted from the movie. The median duration of extracted scan path
duration was 4.39 seconds (mean = 4.36s).
The following figures give an overview of the similarity computations.
Figures 1 and 2 display a frame within the segments in the first run of the movie
with the lowest and highest group-level similarity (averaged across the five dimensions).
The overlayed eye gaze was created with a custom script that is part of the studyforrest
phase-2 data release (Hanke et al., 2016) and publicly available in the corresponding
Github repository [https://www.github.com/psychoinformatics-de/studyforrest-data-phase2/blob/master/code/overlay_gaze_on_video].

[image: low similarity segment]
One frame from the segment within the first run of the movie with the lowest average group-level similarity.
The circles represent participants center of eye gaze.

[image: high similarity segment]
One frame from the segment within the first run of the movie with the highest average group-level similarity.
The circles represent participants center of eye gaze.

The overall similarity of gaze was high, however, there were consistent differences between
dimensions. The Shape, Length and Position
dimension displayed very high similarities, and the average Duration similarity was
the lowest of all dimensions.
Medians and means correspond closely, and standard
deviations are very small. This is also highlighted by Figure 3.

	Variable

	mean [SD]

	median

	Shape

	0.97 [0.01]

	0.97

	Position

	0.88 [0.03]

	0.89

	Length

	0.96 [0.01]

	0.96

	Duration

	0.54 [0.05]

	0.55

	Direction

	0.72 [0.05]

	0.71

[image: distribution of similarity measures]
Distribution of similarity measures throughout the movie. Note the extremely high
position and length dimension.

Discussion

As evident from the previous table and figure, scan paths were almost
perfectly similar on the dimensions vector length and vector position.
This is likely at least partially due to the scan path alignment based on the scan path shape.
Scanpaths were also highly similar on the position dimension, which demonstrates a strong
gaze control of the movie stimulus. Subjects scan paths differed more substantially on
the dimensions direction and duration, which indicates differences in fixation dwelling
times and saccadic angle. Thus, the general points of interest (as evident from high
similarities in position, length and shape) were similar across subject, but differences in
direction and duration might indicate interindividually different exploration strategies.
All dimensions show a remarkable consistency in similarity measures as evident from
the small standard deviations. This might indicate a consistently high level of exogenous
attentional control by the movie stimulus. This finding is consistent with research on
viewing behavior during movies: Unlike during static image viewing, the spatio-temporal
gaze behavior of multiple viewers exhibits a substantial degree of coordination in movie
watching. Smith and Henderson (2008) cued the term attentional synchrony for this
phenomenon. During attentional synchrony, viewers gazes cluster around a small portion
of the screen at any one moment. Goldstein et al. (2007), for example, found the
distribution of fixations of viewers to occupy less than 12% of the total screen area
in more than 50% of the time in six Hollywood movies. In a comparison between
different types of static and dynamic visual stimuli, Dorr et al. (2010) found the
highest consistency between viewers eyegazes during professionally produced (Hollywood)
movies, likely largely due to the use of cinematic composition of scenes, deliberate
camera work and editing. Hasson et al. (2008) found high correspondence in gaze behavior
across subjects, even for backwards presentations of movies.

The results obtained with the multimatch algorithm from the Hollywood movie
Forrest Gump, therefore, are consistent with known properties of gaze behavior
during movie watching. This analysis has furthermore demonstrated one way of using
multimatchs scan path comparison on a grouplevel similarity computation per segment.
If you have any questions about this example, please ask here [https://github.com/adswa/multimatch_gaze/issues/new].

References

Dorr, M., Martinetz, T., Gegenfurtner, K. R., & Barth, E. (2010). Variability of eye
movements when viewing dynamic natural scenes. Journal of vision , 10 (10), 28.
https://dx.doi.org/10.1167/10.10.28

Goldstein, R. B., Woods, R. L., & Peli, E. (2007). Where people look when watching
movies: Do all viewers look at the same place? 37 (7), Computers in biology and medicine ,957 - 964.
https://doi.org/10.1016/j.compbiomed.2006.08.018

Hanke, M., Baumgartner, F. J., Ibe, P., Kaule, F. R., Pollmann, S., Speck, O., …
Stadler, J. (2014). A high-resolution 7-tesla fmri dataset from complex natural
stimulation with an audio movie. Scientific data , 1 ,140003. https://doi.org/10.1038/sdata.2014.3

Hanke, M., Adelhöfer, N., Kottke, D., Iacovella, V., Sengupta, A., Kaule, F. R., …
Stadler, J. (2016). A studyforrest extension, simultaneous fmri and eye gaze
recordings during prolonged natural stimulation. Scientific data , 3 ,160092.
https://doi.org/10.1038/sdata.2016.92

Hasson, U., Landesman, O., Knappmeyer, B., Vallines, I., Rubin, N., & Heeger, D. J.
(2008). Neurocinematics: The neuroscience of film. Projections , 2 (1), 1-26.
https://doi.org/10.3167/proj.2008.020102

Häusler, C. O., & Hanke, M. (2016). An annotation of cuts, depicted locations, and
temporal progression in the motion picture” forrest gump”. F1000Research , 5.
https://doi.org/10.12688/f1000research.9536.1

 Python Module Index

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 multimatch_gaze	

 	
 	
 multimatch_gaze.tests	

 	
 	
 multimatch_gaze.tests.utils	

 Index

Index

 C
 | D
 | F
 | L
 | M
 | P
 | R
 | S
 | T

C

 	
 	create_chunks() (in module multimatch_gaze.tests.utils)

 	create_offsetchunks() (in module multimatch_gaze.tests.utils)

 	
 	create_offsets() (in module multimatch_gaze.tests.utils)

 	create_onsets() (in module multimatch_gaze.tests.utils)

D

 	
 	docomparison_forrest() (in module multimatch_gaze.tests.utils)

F

 	
 	fixations_chunks() (in module multimatch_gaze.tests.utils)

L

 	
 	longshot() (in module multimatch_gaze.tests.utils)

M

 	
 	mk_angles() (in module multimatch_gaze.tests.utils)

 	mk_durs() (in module multimatch_gaze.tests.utils)

 	mk_fix_vector() (in module multimatch_gaze.tests.utils)

 	mk_longershots() (in module multimatch_gaze.tests.utils)

 	
 	mk_strucarray() (in module multimatch_gaze.tests.utils)

 	mk_supershort_shots() (in module multimatch_gaze.tests.utils)

 	multimatch_gaze (module)

 	multimatch_gaze.tests (module)

 	multimatch_gaze.tests.utils (module)

P

 	
 	preprocess_remodnav() (in module multimatch_gaze.tests.utils)

 	
 	pursuits_to_fixations() (in module multimatch_gaze.tests.utils)

R

 	
 	read_remodnav() (in module multimatch_gaze.tests.utils)

S

 	
 	same_sample() (in module multimatch_gaze.tests.utils)

 	
 	short_shots() (in module multimatch_gaze.tests.utils)

T

 	
 	takeclosestleft() (in module multimatch_gaze.tests.utils)

 	
 	takeclosestright() (in module multimatch_gaze.tests.utils)

 <no title>

 <no title>

 the MultiMatch algorithm

the MultiMatch algorithm

method overview

The method takes two n x 3 fixation vectors (x-coordinate, y-coordinate,
duration) of two scanpaths as its input. Example files how input should look
like can be found here [https://github.com/adswa/multimatch/tree/master/data/fixvectors].

	Step 1: Representation of scanpaths as vector sequences

An idealized saccade is represented as the shortest distance between two
fixations. The Cartesian coordinates of the fixations are thus the starting
and ending points of a saccade. The length of a saccade in x direction is
computed as the difference in x coordinates of starting and ending point.
The length of a saccade in y direction is computed accordingly. To represent
a saccade as a vector in two-dimensional space, the lengths in x and y
directions are transformed into polar coordinates (length from coordinate
origin (Rho), polar angle in radians (Theta)) by means of trigonometry.

	Step 2: Scanpath simplification

Scanpaths are simplified based on angle and amplitude (length) to reduce
their complexity. Two or more saccades are grouped together if angles
between two consecutive saccades are below an angular threshold TAmp, and
intermediate fixations are shorter than a duration threshold TDur, or if
the amplitude of successive saccades is below a length threshold TAmp and
the surrounding fixation duration. As such, small, locally contained
saccades, and saccades in the same general direction are summed to form
larger, less complex saccades (Dewhurst et al., 2012). This process is
repeated until no further simplifications are made. Thresholds can be set
according to use case. The original simplification algorithm implements an
angular threshold of 45° and an amplitude threshold of 10% of the screen
diagonal (Jarodzka, Holmqvist & Nyström, 2010).

	Step 3: Temporal alignment

Two simplified scanpaths are temporally aligned in order to find
pairings of saccade vectors to compare. The aim is not necessarily to
align two saccade vectors that constitute the same component in their
respective vector sequence, but those two vectors that are the most
similar while preserving temporal order. In this way, a stray saccade in
one of the two scanpaths does not lead to an overall low similarity
rating, and it is further possible to compare scanpaths of unequal
length. To do so, all possible pairings of saccades are evaluated in
similarity by their shape (i.e. vector differences). More formally, the
vector difference between each element i in scanpath
S1 = (u1, u2, …, um)
and each element j in scanpath
S2 = (v1, v2, …, vn)
is computed and stored in Matrix M as a weight. Low weights correspond to high
similarity. An adjacency matrix of size M is build, defining rules on
which connection between matrix elements are allowed: In order to take
temporal sequence of saccades into account, connections can only be made
to the right, below or below-right. Together, matrices M and the
adjacency matrix constitute a matrix representation of a directed,
weighted graph. The elements of the matrix are the nodes, the connection
rules constitute edges and the weights define the cost associated with
each connection.

	Step 4: Scanpath selection

A Dijkstra algorithm (Dijksta, 1959) is used to find the shortest path from
the the first two saccade vectors to the last two saccade vectors.
“Shortest” path is defined as the connection between nodes with the lowest
possible sum of weights.

	Step 5: Similarity calculation

Five measures of scanpath similarity are computed on the aligned
scanpaths. This is done by performing simple vector arithmetic on all
aligned saccade pairs, taking the median of the results and
normalizing it. As a result, all five measures are in range [0, 1] with
higher values indicating higher similarity between scanpaths on the
given dimension.

References

Dewhurst, R., Nyström, M., Jarodzka, H., Foulsham, T., Johansson, R., &
Holmqvist, K. (2012). It depends on how you look at it: Scanpath comparison in
multiple dimensions with MultiMatch, a vector-based approach. Behavior research
methods, 44(4), 1079-1100. https://doi.org/10.3758/s13428-012-0212-2

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs.
Numerische Mathematik, 1(1), 269 - 271. https://doi.org/10.1007/BF01386390

Jarodzka, H., Holmqvist, K. & Nyström, M. (2010). A vector-based,
multidimensional scanpath similarity measure. In ETRA ‘02: Proceedings of the
2010 symposium on eye tracking research and applications, ACM, New York.
https://doi.org/10.1145/1743666.1743718

 multimatch

multimatch

The multimatch command is the standalone equivalent of the MultiMatch
toolbox and is easiest executed directly from the command line.

execution via commandline

The computation of the similarity between two scanpaths doesn’t involve anything
beyond the command line keyword multimatch followed by two inputs,
corresponding to tabseparated files with a fixation vector:

multimatch path/to/scanpath_one path/to/scanpath_two

multimatch needs the screensize of the presentation screen in pixel as an input. The
default is 1280 x 720px. If this needs adjustment, use the optional –screensize
flag:
- --screensize: in px. Specify first x, then y dimension. Default: 1280 x
720.

multimatch data/fixvectors/segment_0_sub-01.tsv data/fixvectors/segment_0_sub-19.tsv --screensize 1280 720

Optionally, scanpaths can be simplified to reduce their complexity. To simplify
scanpaths, specify the following arguments:

	--direction-threshold: If two consecutive saccades have a small angle, they will be
combined. Should be in degrees, such as 45.0 for 45°

	--amplitude-threshold: If two consecutive saccades are short, they will be
combined. Should be in pixel, such as 100.0 for 100px.

	--duration-threshold: Only if the intermediate fixation’s durations are
shorter than this threshold the above simplification will be performed. Should
be in seconds, such as 0.1 for 100ms.

Note: If either direction- or amplitude threshold is specified as 0, no
grouping will be performed!

A commandline call of the module with simplification would hence look like
this:

multimatch data/fixvectors/segment_0_sub-01.tsv data/fixvectors/segment_0_sub-19.tsv --screensize 1280 720
--direction-threshold 45.0 --amplitude-threshold 100.0 --duration-threshold 0.1

There are no guidelines whether and if so, how much,
simplification is appropriate, and it is strongly dependent
on individual use case. The original matlab toolbox implements a default
amplitude threshold of 10% of the screen diagonal as amplitude, 45° as angle, and 300ms as
duration thresholds. multimatch has no defaults for simplification
(i.e. simplification is not performed by default).

execution within a python instance

If you wish to use the functionality of multimatch within a running python
instance such as ipython, you can import the module and use the function
docomparison. Here is an example:

import multimatch as m
import numpy as np

read in data
fix_vector1 = np.recfromcsv('data/fixvectors/segment_0_sub-01.tsv',
delimiter='\t', dtype={'names': ('start_x', 'start_y', 'duration'),
'formats': ('f8', 'f8', 'f8')})
fix_vector2 = np.recfromcsv('data/fixvectors/segment_0_sub-19.tsv',
delimiter='\t', dtype={'names': ('start_x', 'start_y', 'duration'),
'formats': ('f8', 'f8', 'f8')})

execution with multimatch's docomparison() function without grouping
m.docomparison(fix_vector1, fix_vector2, sz=[1280, 720])

execution with multimatch's docomparison() function with grouping
m.docomparison(fix_vector1, fix_vector2, sz=[1280, 720], grouping=True, TDir=30.0,
TDur=0.1, TAmp=100.1)

 multimatch_forrest

multimatch_forrest

The multimatch_forrest command is additional functionality intended to use
inputs from the studyforrest [https://github.com/psychoinformatics-de/studyforrest-data-phase2] phase 2 eye tracking dataset natively. In this dataset,
N = 30 (n = 15 during simultaneous fmri acquisition, n = 15
in a laboratory setting) participants watched the audiovisual movie Forrest Gump
while their eye movements were recorded with an Eyelink 1000. The movie was
presented in 8 segments of roughly 15 minutes of length. For all details on the
data acquisition, see the corresponding publication [https://www.nature.com/articles/sdata201692] by Hanke and colleagues (2016).

The raw eyetracking data was classified into eye movements (fixations, saccades,
postsaccadic oscillations, and pursuits) with the REMoDNaV (Robust Eye Movement
Detection for Natural Viewing) algorithm (Dar, Wagner & Hanke, in preperation).
These results can be found here [https://github.com/psychoinformatics-de/studyforrest-data-eyemovementlabels] and serve as input files for multimatch_forrest.

Additionally, the studyforrest dataset contains extensive annotation. For
multimatch_forrest, the location-annotation [https://github.com/psychoinformatics-de/studyforrest-data-annotations] (Häusler & Hanke, 2016) of the
movie is used to split the classified eye movement data into scanpaths of
user-specified length within a shot of the movie. This was implemented to take
into account that cuts in dynamic scenes generally lead to a strong center bias
in viewers (Carmi & Itti, 2006). The user can specify whether scanpaths should
start with the beginning of a shot, or, in order to include as little center
bias as possible, should be extraced to end precisely with the end of the shot
(and thus have the longest possible distance between shot onset and scanpath
onset).

The function will take two eyemovement datafiles of one run (one ~15 minute segment,
from two subjects respectively), annotation data of the corresponding run, and
an output path as required inputs and returns a .tsv event file. One row of the
file corresponds to one scanpath comparison, the columns are the onsets of the
compared scanpaths, the exact durations of the scanpaths, and similarity values
on the five dimensions per comparison.

execution via commandline

Just as multimatch [https://multimatch.readthedocs.io/en/latest/multimatch.html], multimatch_forrest also works easiest when executed
in a terminal as a single command line. The comparison of all scanpaths of the
default length (4.92 seconds, the median shot length of the movie) only needs the
command line keyword multimatch_forrest, followed by two inputs, corresponding
to the remodnav [https://github.com/psychoinformatics-de/studyforrest-data-eyemovementlabels] outputs of two subjects in the same run,
the annotation file for the shots of the respective run and an output path.

multimatch_forrest path/to/sub-a_run-x.tsv path/to/sub-b_run-x.tsv
path/to/shotannotation where/results/go

Additionally, the following options can be specified:

	--screensize: in px, specify first x, than y dimensions. Default is 1280 x
720px.

	--direction_threshold: If two consecutive saccades have a small angle, they will be
combined. Should be in degrees, such as 45.0 for 45°.

	--amplitude_threshold: If two consecutive saccades are short, they will be
combines. Should be in pixel, such as 100.0 for 100px.

	--duration_threshold: Only if the intermediate fixation’s durations are
shorter than this threshold the above simplification will be performed. Should
be in seconds, such as 0.1 for 100ms.

Note: If either direction- or amplitude threshold is specified as 0, no
grouping will be performed!

	--duration: The approximate desired duration for a scanpaths in
seconds, e.g. 3.5. Default: 4.92s (the median shotlength).

	--lduration: Option to group short shots in the same locale (i.e no
change in setting) together for longer scanpaths. Shots shorter than ldur
will be attempted to be grouped together.

	--position-offset: Boolean, if True, scanpaths of dur length
stop at shotoffset (instead of beginning at shot onset). Default: False.

execution within a python instance

If you wish to use the functionality of multimatch_forrest within a running python
instance such as ipython, you can import the module and use the function
docomparison_forrest. Here is an example:

import numpy as np
import pandas as pd
import multimatch as m

read in necessary datafiles
annotations (run 1)
shots = pd.read_csv('multimatch/tests/testdata/locations_run-1_events.tsv',
sep='\t')

eyemovement data sub-10
remodnav_1 = np.recfromcsv('multimatch/tests/testdata/sub-10_task-movie_run-1_events.tsv',
delimiter='\t', dtype={'names': ('onset', 'duration', 'label', 'start_x',
'start_y', 'end_x', 'end_y', 'amp', 'peak_vel', 'med_vel', 'avg_vel'),
'formats': ('f8', 'f8', 'U10', 'f8', 'f8', 'f8','f8', 'f8', 'f8', 'f8', 'f8')})

eyemovement data sub-30
remodnav_2 = np.recfromcsv('multimatch/tests/testdata/sub-30_task-movie_run-1_events.tsv',
delimiter='\t', dtype={'names': ('onset', 'duration', 'label', 'start_x',
'start_y', 'end_x', 'end_y', 'amp', 'peak_vel', 'med_vel', 'avg_vel'),
'formats': ('f8', 'f8', 'U10', 'f8', 'f8', 'f8','f8', 'f8', 'f8', 'f8', 'f8')})

execute scanpath comparison
similarities, onsets, durations = m.docomparison_forrest(shots, remodnav_1,
remodnav_2, sz=[1280, 720], dur=3.0, ldur=0, offset=False,TDur=0, TAmp=0,
TDir=0, grouping=False)

References

Carmi, R. & Itti, L. (2006). Visual causes versus correlates of attentional
selection in dynamic scenes. Vision Research, 46, 4333 – 4345.

Hanke, M., Adelhöfer, N., Kottke, D., Iacovella, V., Sengupta, A., Kaule, F. R.,
Nigbur, R., Waite, A. Q., Baumgartner, F. & Stadler, J. (2016).
A studyforrest extension, simultaneous fMRI and eye gaze recordings during
prolonged natural stimulation. Scientific Data, 3:160092.

Häusler, C. O. & Hanke, M. (2016). An annotation of cuts, depicted locations,
and temproal progression in the motion picture “Forrest Gump”. F1000Research,
5:2273.

 <no title>

 multimatch_gaze

multimatch_gaze

 multimatch_gaze.tests package

multimatch_gaze.tests package

Submodules

multimatch_gaze.tests.test_MultiMatch module

multimatch_gaze.tests.utils module

	
multimatch_gaze.tests.utils.create_chunks(onsets, fixations, dur)

	Chunk eyetracking data into scanpaths.

Use onset data to obtain indices of full eyetracking data
for chunking.

	Param

	onsets: array-like, onset times of movie shots

	Param

	fixations: record array, nx4 fixation vector
(onset, x, y, duration),
output of preprocess() function

	Param

	dur: float, desired duration of segment length

	Returns

	startidx, endix: array, start and end ids of eyemovement data
to chunk into segments

	
multimatch_gaze.tests.utils.create_offsetchunks(offsets, fixations, dur)

	Chunk eyetracking data into scanpaths.

Use offset data to obtain indices of full eyetracking data
for chunking.

	Param

	offsets: array-like, offset times of movie shots

	Param

	fixations: record array, nx4 fixation vector
(onset, x, y, duration), output of preprocess()

	Param

	dur: float, desired duration of segment length

	Returns

	startidx, endix: array start and end ids of eyemovement data
to chunk into segments

	
multimatch_gaze.tests.utils.create_offsets(data, dur)

	Create shot offsets from studyforrests location annotation.

Create offset times of all shots of at least ‘dur’ seconds of length

	Param

	data: dataframe, location annotation from studyforrest

	Param

	dur: float, time in seconds a shot should at least be long

	Returns

	onsets: array-like, list of shot offset times

	
multimatch_gaze.tests.utils.create_onsets(data, dur)

	Create shot onsets from studyforrests location annotation.

Create onset times of all shots of at least ‘dur’ seconds of length.

	Param

	data: dataframe
location annotation from studyforrest

	Param

	dur: float
time in seconds a shot should at least be long

	Returns

	onsets: array-like, list of shot onset times

	
multimatch_gaze.tests.utils.docomparison_forrest(shots, data1, data2, screensize=[1280, 720], dur=4.92, ldur=0, offset=False, TDur=0, TDir=0, TAmp=0, grouping=False)

	Compare two scanpaths on five similarity dimensions.

	Param

	data1, data2: recarray, eyemovement information of forrest gump studyforrest dataset

	Param

	screensize: list, screen dimensions in px.

	Param

	ldur: float, duration in seconds. An attempt is made to group short shots
together to form shots of ldur length

	Param

	grouping: boolean, if True, simplification is performed based on thresholds TAmp,
TDir, and TDur

	Param

	TDir: float, Direction threshold, angle in degrees.

	Param

	TDur: float, Duration threshold, duration in seconds.

	Param

	TAmp: float, Amplitude threshold, length in px.

	Returns

	scanpathcomparisons: array
array of 5 scanpath similarity measures

	Returns

	durations: array-like
durations of extracted scanpaths. Vector (Shape), Direction
(Angle), Length, Position, and Duration. 1 = absolute
similarity, 0 = lowest similarity possible.

	Returns

	onsets: array-like
onset times of the scanpaths

	
multimatch_gaze.tests.utils.fixations_chunks(fixations, startid, endid)

	Chunk eyemovement data into scanpaths.

	Param

	fixations: record array, nx4 fixation vector
(onset, x, y, duration), output of preprocess()

	Param

	startid, endid: array, start- and end-ids of the
scanpaths, output from either create_chunks()
or create_offsetchunks()

	Returns

	fixation_vector: array-like, a nx3 fixation vector
(x, y, duration)

	
multimatch_gaze.tests.utils.longshot(shots, group_shots, ldur=4.92)

	Group movie shots without a cut together to obtain longer segments.

Note: This way, fewer but longer scanpaths are obtained. Example: use
median shotlength of 4.92s.

	Param

	shots: dataframe, contains movie location annotation

	Param

	group_shots: boolean, if True, grouping of movie shots is performed

	Param

	dur: float, length in seconds for movie shot. An attempt is made to
group short shots without a cut together to form longer shots of ldur
length

	Returns

	aggregated, dataframe of aggregated movie shots

	
multimatch_gaze.tests.utils.mk_angles()

	creates vectors with predefined angular relations. angles1 and angles2
contain the following properties: 1. same 0, 2. 60 diff, 3. 90 diff,
4.120 diff,4. 180 diff (max. dissimilar). They are in sectors (0,1) and
(0, -1).
Angles3 and angles4 contain the same properties reversed and lie in sectors
(-1, 0) and (-1, -1)

	
multimatch_gaze.tests.utils.mk_durs()

	create some example duration for test_durationsim()

	
multimatch_gaze.tests.utils.mk_fix_vector(length=5)

	creates a random length x 3 fixation vector in form of a record array

	
multimatch_gaze.tests.utils.mk_longershots()

	

	
multimatch_gaze.tests.utils.mk_strucarray(length=5)

	create a random scanpath in the data format generateScanpathStructureArray
would output

	
multimatch_gaze.tests.utils.mk_supershort_shots()

	

	
multimatch_gaze.tests.utils.preprocess_remodnav(data, screensize)

	Preprocess record array of eye-events.

A record array from REMoDNaV data is preprocessed
in the following way: Subset to only get fixation data,
disregard out-of-frame gazes, subset to only keep x, y coordinates,
duration.

	Param

	data: recordarray, REMoDNaV output of eye events from movie
data

	Param

	screensize: list of float, screen measurements in px

	Returns

	fixations: array-like nx3 fixation vectors (onset, x, y,
duration)

	
multimatch_gaze.tests.utils.pursuits_to_fixations(remodnav_data)

	Transform start and endpoints of pursuits to fixations.

Uses the output of a record array created by the remodnav algorithm for
eye-movement classification to transform pursuit data into fixations.
The start and end point of a pursuit are relabeled as a fixation.
This is useful for example if the underlying stimulus material is a
moving image - visual intake of a moving object would then resemble
a pursuit.

	Param

	npdata: recordarray, remodnav output of eyemovement data

	Returns

	newdata: recordarray

	
multimatch_gaze.tests.utils.read_remodnav(data)

	Helper to read input data produced by the REMoDNaV algorithm.
Further information on the REMoDNaV algorithm can be found here:
https://github.com/psychoinformatics-de/remodnav

	
multimatch_gaze.tests.utils.same_sample(run=1, subj=1)

	duplicate dataset to force exactly similar scanpaths. Choose the run
(integer between 1-8) and whether you want a lab (1) or mri (2) subject

	
multimatch_gaze.tests.utils.short_shots(run=3)

	create a shortened shots location annotation to test longshots()

	
multimatch_gaze.tests.utils.takeclosestleft(mylist, mynumber)

	Return integer closest left to ‘myNumber’ in an ordered list.

	Param

	mylist: int

	Param

	mynumber: array

	Returns

	after: float, number within mylist closest to the left of mynumber

	
multimatch_gaze.tests.utils.takeclosestright(mylist, mynumber)

	Return integer closest right to ‘myNumber’ in an ordered list.

	Param

	mylist: int

	Param

	mynumber: array

	Returns

	after: float, number within mylist closest to right of my number

Module contents

_static/plus.png

_static/up-pressed.png

_static/up.png

_images/example_path.png
start of scanpath

Fixations
Saccades

_images/low_sim.png

_images/dimensions.png
